Login
New User

Welcome to AOAS.ORG
Wednesday, June 28 2017 @ 08:29 pm EDT

The most volcanically active place is out-of-this-world!

By Dr. Ethan Siegel

  
  
Io. Image credit: NASA / JPL-Caltech, via the Galileo spacecraft.
Click image for larger view
Volcanoes are some of the most powerful and destructive natural phenomena, yet they're a vital part of shaping the planetary landscape of worlds small and large. Here on Earth, the largest of the rocky bodies in our Solar System, there's a tremendous source of heat coming from our planet's interior, from a mix of gravitational contraction and heavy, radioactive elements decaying. Our planet consistently outputs a tremendous amount of energy from this process, nearly three times the global power production from all sources of fuel. Because the surface-area-to-mass ratio of our planet (like all large rocky worlds) is small, that energy has a hard time escaping, building-up and releasing sporadically in catastrophic events: volcanoes and earthquakes!

Yet volcanoes occur on worlds that you might never expect, like the tiny moon Io, orbiting Jupiter. With just 1.5% the mass of Earth despite being more than one quarter of the Earth's diameter, Io seems like an unlikely candidate for volcanoes, as 4.5 billion years is more than enough time for it to have cooled and become stable. Yet Io is anything but stable, as an abundance of volcanic eruptions were predicted before we ever got a chance to view it up close. When the Voyager 1 spacecraft visited, it found no impact craters on Io, but instead hundreds of volcanic calderas, including actual eruptions with plumes 300 kilometers high! Subsequently, Voyager 2, Galileo, and a myriad of telescope observations found that these eruptions change rapidly on Io's surface.

Where does the energy for all this come from? From the combined tidal forces exerted by Jupiter and the outer Jovian moons. On Earth, the gravity from the Sun and Moon causes the ocean tides to raise-and-lower by one-to-two meters, on average, far too small to cause any heating. Io has no oceans, yet the tidal forces acting on it cause the world itself to stretch and bend by an astonishing 100 meters at a time! This causes not only cracking and fissures, but also heats up the interior of the planet, the same way that rapidly bending a piece of metal back-and-forth causes it to heat up internally. When a path to the surface opens up, that internal heat escapes through quiescent lava flows and catastrophic volcanic eruptions! The hottest spots on Io's surface reach 1,200°C (2,000°F); compared to the average surface temperature of 110 Kelvin (-163°C / -261°F), Io is home to the most extreme temperature differences from location-to-location outside of the Sun.

Just by orbiting where it does, Io gets distorted, heats up, and erupts, making it the most volcanically active world in the entire Solar System! Other moons around gas giants have spectacular eruptions, too (like Enceladus around Saturn), but no world has its surface shaped by volcanic activity quite like Jupiter's innermost moon, Io!

Learn more about Galileo’s mission to Jupiter: http://solarsystem.nasa.gov/galileo/.

Kids can explore the many volcanoes of our solar system using the Space Place’s Space Volcano Explorer: http://spaceplace.nasa.gov/volcanoes.
The most volcanically active place is out-of-this-world! | 0 comments | Create New Account
The following comments are owned by whomever posted them. This site is not responsible for what they say.

User Functions






Lost your password?

What's New

STORIES

No new stories

COMMENTS last 2 days

No new comments

LINKS last 2 weeks

No recent new links

Want It ALL?

Become a card-carrying member of AOAS. Paying dues gives you several advantages over other registered users, including a subscription to the club newsletter, an AOAS.ORG e-mail address, use of club materials, including books and telescopes, and access to the Coleman Observatory facilities. On top of all that, you also qualify for a 20% discount on all books at any Books-A-Million location.

To get your membership application, click here.